A new generation of hydrounit monitors*

By Branko Bajic
Korto Cavitation Services, Luxembourg, Luxembourg
www.korto.com info@korto.com

ABSTRACT

Monitoring of a hydro unit can be performed by a simple system and still be very efficient if a
multidimensional approach is applied to signal sensing and to signal and data processing. The
advantages of this concept are low costs and easier maintenance, which make it suitable for
all units and plants and not only for the large ones. The output of such a system and some
typical applications are illustrated.

Introduction

If the system used to monitor hydro unit operation is separated from the system used to
control it, the monitoring system can be rather simple. By organizing the monitoring in a
multidimensional way, the functionality of such a simple system can surpass a system based
on complex hardware and a costly collection of specialized software subsystems, which is a
common configuration offered on the world market. The term multidimensional is used to
describe a monitoring algorithm based on the full usage of observable data on all the
dimensions of monitored processes. This implies suitable sampling of all the quantities in
space, time, rotor instantaneous position, frequency, and the domain of state variables; true
multidimensional processing of such data; using direct and hidden inter-relationships among
the data; and optimizing the monitoring algorithm based on secondary data yielded by such a
procedure.

The multidimensional concept was initially introduced for the diagnostics and monitoring of
cavitation [1]. First, turbines with a high number of runner blades were considered. The
concept was later broadened to the case of a low number of runner blades as well [2]. This
approach was based on a detailed study of sensors and signal and data processing problems
[3]. Several examples of successful application have been presented [1, 2, 4, and 5].

In this paper, the concept of general multidimensional monitors is illustrated. Such simple and
inexpensive but effective systems might well be the next generation of hydropower unit
monitors, offering a solution well-suited for plants and units of all sizes.

Implementation

The best strategy of devising a monitoring system for a unit under consideration is:
- perform first a diagnostic test on it;

- use the operators' insights and the diagnostic test results to define the list of quantities to
be monitored; optimize the selection, number, and location of sensors;

- adapt the multidimensional algorithm to the unit.

By following this strategy, rather than installing a pre-defined "one size fits all" system, the
monitoring system can be cost-effectively tailored to the unit-specific or plant-specific issues.
The last step of matching the multidimensional algorithm to the particularities and peculiarities

* Presented at the HydroVision 2004 Conference,
August 14-20, 2004, Montréal, Québec, Canada



of the unit is crucial. This ensures high sensitivity for detecting deterioration effects and
improves monitoring reliability.

Whatever the result of such an optimization, the monitoring system can be quite simple. It
consists of sensors, a small industrial computer with an analog-to-digital conversion card, and
multidimensional software. No additional analog units are heeded with suitable selection of the
A-D card. This reduction in hardware reduces costs, simplifies maintenance, and permits easy
reconfiguration of the system.

Sensing

Problems with sensing dynamic signals are
illustrated here using an example of cavitation
diagnostics. The figure shows the results from
a cavitation test performed on a bulb unit, and
similar results are exhibited by Francis and
Kaplan units. The sensors in 24 positions
around the turbine runner yielded 24 curves
as shown. These curves describe the
dependence of cavitation noise power (radial
co-ordinate) on the instantaneous angular

position of the runner (angular co-ordinate). R

The peaky structure of the curves reflects the ‘
changes in cavitation conditions that the runner s
blades experience while passing through the

wake fields of guide vanes. Each peak is

related to a single blade-vane pair, and

analysis of such curves yields data on cavitation qualities of individual runner blades and
data on the influence individual guide vanes have on cavitation.

The curves in the figure differ significantly, both in form and in mean value. Thus, by taking
into account only one or few sensors, incorrect estimates of the cavitation intensity related to
pairs might be obtained, and the same holds for the mean intensity estimates. Therefore, in
order to get a true characterization of cavitation in a turbine, either in the form of detailed data
or in the form of data on the total cavitation in the turbine, one must use a sufficiently high
number of sensors suitably distributed over the turbine. Cavitation monitors that spare on
sensors may Yield non-representative results.

Processing

The situation with respect to spatial sensing, illustrated here by cavitation, is encountered
while monitoring other dynamic quantities as well. The same holds true for the algorithms used
to process signals and acquired data. A particular analysis-synthesis procedure is needed in
order to make the results interpretable and reliable. Using the cavitation example above, this
procedure can be presented as follows: (1) decompose the peaky structures of strongly mixed
contributions from different blade-vane pairs; (2) distinguish between different cavitation
mechanisms; and then (3) synthesize quantities such as the intensity of a particular
mechanism on a particular blade behind a particular vane.

Data presentation

In several figures that follow the typical output of a monitor is illustrated. The design bringing
all important data in the basic window is adopted, and for details, one clicks further.
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Bruto pad (m)

S0

Zracni raspor (mm) i Vibracije vratila [ pm)

The operation log in the head-flow plane with the turbine shell
diagram and the operation statistics (the closed curves denote
equal-duration regions) helps judge the actual operation
condition and the accumulated effects. Similarly, stressors like
vibration and cavitation are also presented in such a way. This
is one example of the additional windows that can be activated.
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The stator's and rotor's forms deduced from the air gap data, together
with this data itself attached on the rotor form. The deviation from the
ideal forms (white) and the air gap data are all in scale. Instead of
describing the air gap over a pole by its mean value, a linear
approximation of its form along the circumference is shown. Note that,
in the present case, one pole stands out by 1 mm into the air gap.
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The shaft axis kinematics followed
at four locations along the axis is a
good way to assess the rotor
movement. It also tells much about
the issues like the lubrication
situation in the bearings.
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Application examples

Pole-shape identification

A detailed survey of the air gap
variation along the pole's
circumferential length, shown in
figure, yields details on the pole
finish and its mounting. Here, three
neighboring poles are compared to
the ideal shape. One pole stands
out strongly and is inclined.

=P e
£ -
= L"i ' I
B I | | P
e e
400 _
pHm ra
0 T
~ *f .
-400 . il
um i . .__._.. /)_ j \__\
-400 { W "~ B
" . 'a
-800 - '*...‘h e
F

Vibration reduction

A unit suffered from severe shaft
vibration. Magnetic flux data

revealed the cause, and air gap

data yielded a detailed description

of shaft kinematics. This facilitated

an efficient two-step counter-measure
which suppressed the vibration
amplitude by a factor 3-5 from

Initial to and then to
Counter-Centered [6].
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Vibration modeling

An elastic-beam model drawn through the
relative shaft vibration amplitude data as
sensed along the shaft describes well the
true form of the vibration distribution in the
horizontal plane (upper graph) and the
vertical plane (lower graph). Adding to this
few plausible assumptions, one gets a tool
that predicts machinery loading and
describes circumstances in the bearings,
which are otherwise hard to assess. Further,
the model reduces data needed to describe
vibration and makes that description robust.
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Cavitation monitoring

The multidimensional algorithm,

based on 4-8 sensors per unit, yields:
* areliable and true estimate of the
total cavitation intensity (right),
intensity of cavitation at a runner blade,
data on the guide vanes' influence.
All this comes

with or without spatial resolution, and
with or without resolution over
cavitation mechanisms (different
types of cavitation or cavitation in
different locations).
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Spatial resolution

In a large-diameter bulb unit monitored,
cavitation was strongly varying in the vertical
plane. This was quantified by the analysis
resolving angular segments of the flow. A
shift of the intensity maximum in the rotation
direction (clockwise) is observed.
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Cavitation mechanisms

Almost regularly, one finds several
cavitation processes in a turbine; there are
4 in the example shown. It is hecessary to
distinguish between them, since -
depending on the aim of monitoring - not all
are important (e.g., not all are erosive).

Unit power (MW)

Operation optimization
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Combining the results like those illustrated
above (red) with the statistics of head,
tailwater, and power values (blue), one can
optimize unit operation for a minimum
accumulated cavitation erosion (which is
also monitored).
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Turbine instability

Cavitation monitoring resolving angular segments in a
turbine and yielding data on each runner blade
independently was used, in a case illustrated here, in
two operational situations:

blue - normal;

red - with trash caught on guide vanes.

Radial co-ordinate - cavitation intensity;

angular co-ordinate - position of a segment.

The four curves in each color, corresponding to four
blades, show that, when the trash is acting, one poor
blade cavitates explosively within a portion of a
revolution. This was recognized as the cause of strong
once-per-revolution power fluctuations the unit suffers

from.
Malfunction detection
Cavitation o o
Intensity In order to test the sensitivity of a monitor's
ina cavitation channel to changes in turbine's
resolution behavior or deterioration effects, one guide

cell vane was slightly shifted from its normal
position. In the related spatial resolution cell
of monitor's output, strong change was
found -

blue - normal vane position,

red - shifted:

cavitation was intensified and its threshold
shifted towards lower loading. At the same
time, there was no recognizable change in the output showing the total intensity of cavitation
in the turbine. This illustrates another quality of the multidimensional monitor. By involving
resolution in important variables, it ensures extremely high sensitivity in the detection of the

deterioration effects.

Unit power (MW)

Conclusion

This paper describes a simple multidimensional monitor which provides a cost-effective
alternative to large and expensive systems for monitoring hydropower units. Implementation
of the monitor is preceded by a diagnostic test, and the monitor is based on a multi-
dimensional algorithm.

The multidimensional cavitation monitor, implemented independently or as a part of a general
monitoring system, distinguishes between turbine parts and between cavitation mechanisms;
it yields detailed data on cavitation, useful for diagnostics and operation optimization; and it
detects changes and deterioration effects with a high sensitivity.
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